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We are investigating the three-dimensional case of free oscillations 
propagated on the surface of an infinite circular cylinder which repre- 
sents a cavity in infinite elastic space. Suppose the infinite elastic 
space has a cavity of the shape of an infinitely long circular cylinder 
with the diameter 2R, whose axis we assume to be the z-axis, and r, 8 
are the polar coordinates of the points in a plane perpendicular to the 
axis of the cylinder. The vector equation of motion of the homogeneous 
and isotropic elastic medium, when mass forces are absent, has the form 

(h+2p)graddivu-protrotu=p$ (1) 

where II is the displacement vector, h, M are Lam&s constants, p is the 

density. Let us decompose the displacement vector II into a sum of two 
vectors - the potential and the solenoidal 

u=gradQ,+rotg (2) 

Then equation (1) will be satisfied if we set 

where v is the Hamilton’s operator. Formula (2) represents the general 
solution of equation (1). The vector potential can always be chosen so 
as to have its z component equal to zero. Expressing the gradient and 
curl in cylindrical coordinates and bearing in mind that @2y, = grad 
div y - rot rot y, we obtain 
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For the components of stress acting on an element of the boundary 
area re have 

au, 
a,=Idiva+2+,r, rrv=)r --+r-&(T)}l &=p{!$+%} (6) 

where ur, u , 
Terezara [I Ip 

uz are defined by the expressions (4). Let us set, as does 

S,+Wv=%. ‘Pr-irP,=Ipt (i* = - 1) (7) 

Then 

Thus, from the system of equations (5) by means of the substitution 

(7) we have obtained equations (8), Independent of each other. Let 

Q, = @rPe’~ (9) 

Then 

Substituting ‘$ = ‘+)=-ie’ in (lo). we have 

@@a 
r’---- 

d@r 
drs + r dr- 

[(el - h4) 9 + n*] CD* = 0 (11) 

Considering the oscillations which are rapidly damped in depth. let 

us introduce into the Integral of equation (11) the Macdonald’s func- 

tion x,[J (e2 - h2r)l, which. as Is well known. for J (e2 - h2) ' 0 and 

r - UJ tends to zero exponentially. Thus, for r >,R we have the solution 

of the first of equations (5) in the form 

(12) 
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If one considers oscillations characterized by beats then the func- 

tion of Weber-Neumann should be taken as the integral of equation (11). 
Analogously to the solution (12) found above, we will obtain the solu- 
tion of equations (8) in the form (k2 = p2/b2) 

q1 = BKncl (jf 8% - kar) efne ef(Pr-ez), 

In formulas (12) and (13) the quantities A, 5, C are constants. From 
forplula (13) we obtain the expressions for the components yr, q+, of the 
vector potential 

We write the scalar potential in the form 

@ = A&P-z) K, (ar) &“p (a=Jre*--ha, fJ= )/ea (15) 

Substituting formulas (14) and (15) into (4). and the expressions 
thus obtained into (8). and making use of the recurrence formulas for 
the functions K,(a) 

K,,’ (I) = - l/a r &+I (4 + &-, (4 I, ZK,,’ (x) = - nK,, (2) - zK,+~ (2) 

2Kn”(z) = ‘laK,,+ (4 + K,, (4 + l/gKnfa (2) (16) 

we obtain the expressions for the projections of the displacement 
vector and the components of the stress vector on the surface of the 
cavity with r = R (17) 

urO= - QAa c[K,,+~ (aR) + K,_, (aR)] ei(pt--br)eiw + liae [BK,,+l (PR) - CK,, (PR)ll 

uwto) = _&n / RK, (aR) ,#‘f-er)efn~ - l/&3 [BK,,+l (PR) + CKn_1 @R)] ei(pt-er)ein~ 

Q’) = - AieK, (aR) ei(pt--er) e’w + l/,& (B _ C) K, (PR) ei(Pt-e@eh 

[r,,] jrzR = p {Aiea [K,,,, (aR) + K,,_, (aR)] et(Pf-ez)eiruP - 

- ‘/,iB [(20* + pa) Kn+l (PR) + paK,,+ (PR)] ei(Pt-ez)eim + (18) 

+ ‘l&C [(2ea + Pa) K,,+ (PR) + i3aK,,+1 (PR)l e i(pl-02) &nro 

[fro lr=R = P N- 2~ / R) A [@ -t 0 K,, W) / R + a&+ (WI + 

+ lIdWBK,,+z (PR) + 1/@3CK,,_z @R)) ei(Pt-ez)ein’o 

lbr IT= R = CL (A l(Ba - ka f a*) K,, @R) -I- 1/aaaK,_2 (aR) + l/dK,,+z (al?) j + 

+ ‘$3 {-- ‘/aB W,,,, C-W + K,, (PK)ll + ‘/aC [K,, WV + K,,_, @R)Ij ei(pf-er)eiw 
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To obtain the condition of stress-free surface of the cylinder we 

set in (19) ur, T,,, 7 equal to zero for r = f?. We then obtain three 
linear homogeneous equ:?ions for determination of the constants A, R, C. 

For the existence of solutions A, R, C, different from zero, it is 
necessary that the third-order determinant A(9) = Iaij/ be equal to zero. 
The terms of the determinant “ij are of the following form 

all= go I&+, 6.4 + K,,, WI, 01s = - $ [(20’ + P”) K,,+I (IW + Pa&_1 (PW 

au = $ W* + P*) K,_, CW + Ps&,+1 (PK)l, w = f WK,,+l (BR) 

apl = - (2n / W [(n + 1) K,, @fO + a&,-I(aW am= 4 W-k;-:, WI 

an= (iw- k* + a*) K,, (al?) + f a’K,,+ (al?) + t a*Ktil (ali) 

am=- + W [K,, W) -I- K,, (Pfll, et+ = -+ W [K,, (PR) + &,_, WI1 

Thus the equation of frequencies has the form 

A (9) = 1 aij I = 0 

The third-order determinant yields a transcendental equation for the 

determination of 8. Let us consider oscillations with high frequencies. 
We designate by 8 = 8/p the quantity reciprocal to the velocity of wave 
propagation along the cylinder. 

Assuming that the frequency is sufficiently high, we replace in equa- 
tion (20) the functions K,(x) by their asymptotic expressions. We have 

Substituting (21) into (20) we find 

A (6) - 

Adding the second and third columns in (22) we SSSilY find 

A (0) - p’[(2!3)=- 
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The expression in square brackets (23) is called the Rayleigh func- 

tion [21 . As is well known, the equation 

(268 - b-a)3 - 462 Jf/as - a-s Jffp - b- = 0 

has a single real positive root and another one negative of equal magni- 

tude. Thus, when the frequency tends to infinity, equation (20) has a 

single real positive root and another one negative of equal modulus. 

These roots are the roots of equation (24), known as the Rayleigh’s 

equation. Let us designate these roots by 6 = & l/c, where c is the 

velocity of the Rayleigh wave. 

Thus we arrive at the result: when the frequency tends to infinity 

the velocity of wave propagation on the surface of a cylinder tends to 

the velocity of the Rayleigh wave. 

For the case of oscillations with axial symmetry, equation A(0) = 0 

has been investigated in [31. 

Let us note that the method considered here can also be applied in 

the investigation of free oscillations of a cylinder. For that purpose, 

in the expressions (12) and (14) the modified Bessel functions [41 
I u+I(E)’ In(<) * In-1 (c) should be taken instead of the Macdonald func- 

tions Ku-I (E.) P qJ-3 # K”_&). 

In that case the damping along the depth of the cylinder will also 

take place, due to the properties of the function I,,(<). The condition 

of stress-free surface of the cylinder will lead to an equation analo- 

gous to A(0) = 0, which has been investigated for the case of oscilla- 

tions with axial symmetry [51. 
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